Some variants of Ostrowski's method with seventh-order convergence
نویسندگان
چکیده
منابع مشابه
Some variants of Cauchy’s method with accelerated fourth-order convergence
In this paper, we present some variants of Cauchy’s method for solving non-linear equations. Analysis of convergence shows that the methods have fourth-order convergence. Per iteration the new methods cost almost the same as Cauchy’s method. Numerical results show that the methods can compete with Cauchy’s method. © 2007 Published by Elsevier B.V. MSC: 41A25; 65D99
متن کاملNew iterative methods with seventh-order convergence for solving nonlinear equations
In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.
متن کاملSome variants of the Chebyshev-Halley family of methods with fifth order of convergence
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...
متن کاملOn some variants of second-order unification
In this thesis we present several results about Second-Order Unification. It is well known that the Second-Order Unification Problem is in general undecidable; the frontier between its decidable and undecidable subclasses is thin and it still has not been completely defined. Our purpose is to shed some light on the Second-Order Unification problem and study some of its variants. We have mainly ...
متن کاملAN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS
Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2007
ISSN: 0377-0427
DOI: 10.1016/j.cam.2006.10.073